Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2327188

ABSTRACT

In this study, a method was proposed to predict the infection probability distribution rather than the room-averaged value. The infection probability by airborne transmission was predicted based on the CO2 concentration. The infection probability by droplet transmission was predicted based on occupant position information. Applying the proposed method to an actual office confirmed that it could be used for quantitatively predicting the infection probability by integrating the ventilation efficiency and distance between occupants. The infection probability by airborne transmission was relatively high in a zone where the amount of outdoor air supply was relatively small. The infection probability by droplet transmission varied with the position of the occupants. The ability of the proposed method to analyze the relative effectiveness of countermeasures for airborne transmission and droplet transmission was verified in this study. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
International Journal of Numerical Methods for Heat and Fluid Flow ; 2023.
Article in English | Scopus | ID: covidwho-2316978

ABSTRACT

Purpose: Ventilation of indoor spaces is required for the delivery of fresh air rich in oxygen and the removal of carbon dioxide, pollutants and other hazardous substances. The COVID-19 pandemic brought the topic of ventilating crowded indoors to the front line of health concerns. This study developed a new biologically inspired concept of biomimetic active ventilation (BAV) for interior environments that mimics the mechanism of human lung ventilation, where internal air is continuously refreshed with the external environment. The purpose of this study is to provide a detailed proof-of-concept of the new BAV paradigm using computational models. Design/methodology/approach: This study developed computational fluid dynamic models of unoccupied rooms with two window openings on one wall and two BAV modules that periodically translate perpendicular to or rotate about the window openings. This study also developed a time-evolving spatial ventilation efficiency metric for exploring the accumulated refreshment of the interior space. The authors conducted two-dimensional (2D) simulations of various BAV configurations to determine the trends in how the working parameters affect the ventilation and to generate initial estimates for the more comprehensive three-dimensional (3D) model. Findings: Simulations of 2D and 3D models of BAV for modules of different shapes and working parameters demonstrated air movements in most of the room with good air exchange between the indoor and outdoor air. This new BAV concept seems to be very efficient and should be further developed. Originality/value: The concept of ventilating interior spaces with periodically moving rigid modules with respect to the window openings is a new BAV paradigm that mimics human respiration. The computational results demonstrated that this new paradigm for interior ventilation is efficient while air velocities are within comfortable limits. © 2023, Emerald Publishing Limited.

3.
Transportation Engineering ; 12, 2023.
Article in English | Scopus | ID: covidwho-2266491

ABSTRACT

This study experimentally measured the ventilation efficiency in road vehicles. Two air circulation methods, air conditioning and opening windows, were considered and their ventilation efficiencies were measured for a sedan and a cutaway bus. The ventilation efficiencies have been evaluated by measuring the aerosol concentration parameter at different locations inside the vehicle. For both vehicles, any of the ventilation scenarios significantly increased the air exchange rate. The best performance was shown when all windows were open in a moving vehicle. As an illustration of using the obtained measurements, respiratory infection probability was calculated using the Wells-Riley model. Any of the ventilation cases significantly decreased the infection risk. The ventilation efficiency and infection probability were highly dependent on the air circulation method and vehicle type. © 2023 The Author(s)

4.
Journal of Environmental Protection and Ecology ; 23(2):454-461, 2022.
Article in English | Web of Science | ID: covidwho-1865979

ABSTRACT

In the context of the global outbreak of COVID-19, health issues have attracted worldwide attention. Building a healthy ecological environment is particularly important for human beings, and among the ecological environmental factors, air quality is particularly prominent. The study takes the air quality of newly-built immigrant relocation communities in Western China as the research object, and adopts a number of technical methods, such as professional laboratory test report, instrument test, calculation test and so on. Obtain the data of regional ambient air quality and building indoor air quality, and comprehensively judge the regional environment and building ventilation efficiency of the experimental point. So as to comprehensively grade the air quality of the experimental point. A number of technologies and methods are studied and integrated to form a comprehensive three-dimensional air quality detection technology integration. From the perspective of air quality inspection, provide technical support for the healthy and sustainable development of relocated new rural communities. It is of great practical significance to supervise and urge the construction of a healthy and sustainable new township village.

5.
Earozoru Kenkyu ; 36(4):246-252, 2021.
Article in Japanese | Scopus | ID: covidwho-1847684

ABSTRACT

Worldwide pandemic by COVID-19 still continues. Ventilation is recommended as one of the important measures against virus infection. However, if ventilation measures are taken in the wrong way, not only the measures can’t reduce the risk of infection, but also they may make increase it. The effect of ventilation as an infection control, how to determine the volume flow rate requirement, and the ventilation method for effective air exchange has been studied. Based on these results, how we should consider effective ventilation to reduce the risk of viral infections were discussed in this paper. © 2021 The authors.

6.
Engineering Computations (Swansea, Wales) ; 2022.
Article in English | Scopus | ID: covidwho-1788583

ABSTRACT

Purpose: Due to the ongoing Covid-19 pandemic, ventilation in a small cabin where social distancing cannot be guaranteed is extremely important. This study aims to find out the best configuration of open and closed windows in a moving car at varying speeds to improve the ventilation efficiency. The effectiveness of other mitigation measures including face masks, taxi screens and air conditioning (AC) systems are also evaluated. Design/methodology/approach: Each window is given three opening levels: fully open, half open and fully closed. For a car with four windows, this yields 81 different configurations. The location of virus source is also considered, either emitting from the driver or from the rear seat passenger. Then three different travelling speeds, 5 m/s, 10 m/s and 15 m/s, are examined for the window opening/closing configurations that provide the best ventilation effect. A study into the effectiveness of face masks is realised by adjusting virus injection amounts;and the simulation of taxi screens and AC system simply requires a small modification to the car model. Findings: The numerical studies identify the top window opening/closing configurations that provide the most efficient ventilation at different moving speeds, along with a comprehensive ranking list. The results show that fully opening all windows is not always the best choice. Simulations evaluating other mitigation measures confirm good effect of face masks and poor performance of taxi screens and AC systems. Originality/value: This work is the first large-scale numerical simulation and parametric study about different window opening/closing configurations of a moving car. The results provide useful guides for travellers in shared cars to mitigate Covid-19 transmission risks. The findings are helpful to both individuals' health and society's recovery in the Covid-19 era and they also provide useful information to protect people from other respiratory infectious diseases such as influenza. © 2022, Emerald Publishing Limited.

7.
Engineering (Beijing) ; 8: 130-137, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1065073

ABSTRACT

The transmission of coronavirus disease 2019 (COVID-19) has presented challenges for the control of the indoor environment of isolation wards. Scientific air distribution design and operation management are crucial to ensure the environmental safety of medical staff. This paper proposes the application of adaptive wall-based attachment ventilation and evaluates this air supply mode based on contaminants dispersion, removal efficiency, thermal comfort, and operating expense. Adaptive wall-based attachment ventilation provides a direct supply of fresh air to the occupied zone. In comparison with a ceiling air supply or upper sidewall air supply, adaptive wall-based attachment ventilation results in a 15%-47% lower average concentration of contaminants, for a continual release of contaminants at the same air changes per hour (ACH; 10 h-1). The contaminant removal efficiency of complete mixing ventilation cannot exceed 1. For adaptive wall-based attachment ventilation, the contaminant removal efficiency is an exponential function of the ACH. Compared with the ceiling air supply mode or upper sidewall air supply mode, adaptive wall-based attachment ventilation achieves a similar thermal comfort level (predicted mean vote (PMV) of -0.1-0.4; draught rate of 2.5%-6.7%) and a similar performance in removing contaminants, but has a lower ACH and uses less energy.

SELECTION OF CITATIONS
SEARCH DETAIL